On the non-chiral intermediate long wave equation: II. Periodic case

نویسندگان

چکیده

Abstract We study integrability properties of the non-chiral intermediate long wave (ncILW) equation with periodic boundary conditions. The ncILW was recently introduced by authors as a parity-invariant relative equation. For this new we: (a) derive Lax pair, (b) Hirota bilinear form, (c) use method to construct family exact solutions, (d) Bäcklund transformation, (e) transformation obtain an infinite number conservation laws.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Wave Equation in Non-classic Cases: Non-self Adjoint with Non-local and Non-periodic Boundary Conditions

In this paper has been studied the wave equation in some non-classic cases. In the  rst case boundary conditions are non-local and non-periodic. At that case the associated spectral problem is a self-adjoint problem and consequently the eigenvalues are real. But the second case the associated spectral problem is non-self-adjoint and consequently the eigenvalues are complex numbers,in which two ...

متن کامل

Periodic and Localized Solutions of the Long Wave-Short Wave Resonance Interaction Equation

In this paper, we investigate the (2+1) dimensional long wave-short wave resonance interaction (LSRI) equation and show that it possess the Painlevé property. We then solve the LSRI equation using Painlevé truncation approach through which we are able to construct solution in terms of three arbitrary functions. Utilizing the arbitrary functions present in the solution, we have generated a wide ...

متن کامل

Non-periodic Homogenization of the Elastic Wave Equation for Wave Propagations in Complex Media

When considering numerical acoustic or elastic wave propagation in media containing small heterogeneities with respect to the minimum wavelength of the wavefield, being able to upscale physical properties (or homogenize them) is valuable, for mainly two reasons: first, replacing the original discontinuous and very heterogeneous media by a smooth and more simple one, is a judicious alternative t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 2022

ISSN: ['0951-7715', '1361-6544']

DOI: https://doi.org/10.1088/1361-6544/ac45e9